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1. Introduction
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which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This study attempts to address the issue that present cross-modal image synthesis algorithms do not capture the spatial and
structural information of human tissues effectively. As a consequence, the resulting photos include flaws including fuzzy edges
and a poor signal-to-noise ratio. The authors offer a cross-sectional technique that combines residual modules with generative
adversarial networks. The approach incorporates an enhanced residual initial module and attention mechanism into the
generator network, reducing the number of parameters and improving the generator’s feature learning capabilities. To boost
discriminant performance, the discriminator employs a multiscale discriminator. A multilevel structural similarity loss is
included in the loss function to improve picture contrast preservation. On the ADNI data set, the algorithm is compared to the
mainstream algorithms. The experimental findings reveal that the synthetic PET image’s MAE index has dropped while the
SSIM and PSNR indexes have improved. The experimental findings suggest that the proposed model may maintain picture
structural information while improving image quality in both visual and objective measures. The residue initial module and
attention mechanism are employed to increase the generator’s capacity for learning, while the multiscale discriminator is
utilized to improve the model’s discriminative performance. The enhanced method in this study can maintain the structure
and contrast information of the picture, according to comparative experimental findings using the ADNI dataset. The
produced picture is hence more aesthetically similar to the genuine print.

diagnosis of the disease through the functional changes of
the tissue in the diseased area, but it is expensive, and the

With the development of science and technology, there are
various ways of acquiring medical images, and different
modalities of medical images have distinct advantages and
disadvantages. For example, magnetic resonance imaging
(MRI) has no radiation on the human body, the soft tissue
structure is displayed, and rich diagnostic information can
be obtained, but the acquisition time is extended, which is
prone to artifacts; positron emission computed tomography
(positron emission tomography (PET)) can make an early

image resolution is low. Furthermore, studies have shown
that the morphological or functional abnormalities of the
human body caused by diseases are often manifested in var-
ious aspects. Therefore, the information obtained by a single
modality imaging device usually cannot fully reflect the
complex characteristics of the disease [1]. Still, clinical med-
ical images of different modalities are collected simulta-
neously. It requires a lot of time and financial resources.
Therefore, how to use the medical images of the existing
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modalities to accurately synthesize the pictures of the needed
modalities through computer technology has been the
research direction in recent years.

The majority of medical picture cross-modality synthesis
techniques are based on deep learning, which may be classi-
fied as cross-modality synthesis methods based on paired
data or cross-modality synthesis methods based on unpaired
data depending on the kind of data employed. This work
investigates cross-modal synthesis approaches based on
paired data since cross-modal synthesis based on unpaired
data cannot provide subject-specific visuals. PET scans (pos-
itron emission tomography scans) are frequently performed
in combination with CT scans or MRI scans (magnetic res-
onance imaging scans). While CT and MRI scans provide
images of the inside organs and tissues of your body, PET
scans can provide your doctor with a glimpse of complicated
systemic disorders because they highlight cellular concerns.
PET scans employ positrons as opposed to MRIs. Your body
is given an injection of a tracer that enables the radiologist to
view the region being scanned. While PET scans are used to
examine your body’s function, an MRI scan may be utilized
to determine the form of your organs or blood arteries. 3D
CNN was utilized in the literature [2] to predict from MRI
to PET. Each sample picture was broken into many image
blocks in the experiment to maximize the quantity of sample
data. The method created a PET picture with an excellent
classification effect. A deep residual inception encoder-
decoder neural network (RIED-Net) was suggested in the lit-
erature [3] to learn the mapping between pictures of various
modalities and improve generation performance. CNN-
based approaches outperform older methods because they
can automatically and effectively learn and pick characteris-
tics. The transfer learning of VGG16 with one retrained
ConvLayer produces the best results, which are somewhat
higher than the state-of-the-art result. The specified feature
may learn from the new dataset using the unfrozen Con-
vLayer. As a result, the specific feature is an important aspect
in improving accuracy; a model’s strength of expression and
overfitting must be balanced. A network that is too basic fre-
quently cannot learn enough from the data and so cannot
achieve high accuracy. An extremely complicated network,
on the other hand, is difficult to train and soon overfits. As
a result, precision remains poor. Only a network structure
with the correct size and other efficient overfit prevention
strategies, such as a proper dropout rate and data augmenta-
tion, will produce the best outcomes. However, due to time
constraints, further research is required. Training a fine-
tuned deep convolutional neural network with defrosted
ConvLayers tends to overfit in transfer learning. Other more
powerful CNN models, such as ResNetv2 and ensembles of
multiple CNN models, have not been evaluated, but they
may improve the results; visualization should be added to
improve understanding and explanation of the CNN-based
system’s results, as these are required for the adaptation of
a CNN-based system in real clinical applications. Literature
[4] suggested a context-aware generative adversarial network
that uses an artificial context model to get the high-accuracy
and resilient mapping from MRI to CT (computed tomogra-
phy) images. A multichannel generative adversarial network
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was presented in the literature [5] to manufacture PET pic-
tures. The experiment was carried out on 50 lung cancer
patients’ PET-CT data to produce more realistic PET pic-
tures. To produce projected PET data with given CT data,
literature [6] paired a fully convolutional network with a
conditional generative adversarial network and obtained
excellent results. In contrat to statistical parameter mapping
analysis, literature [7] developed a 3D generative network
model based on residual network to learn the mapping from
MRI to FDG (fluorodeoxygloucose). Despite the excellent
results of the above cross-modal synthesis approaches,
owing to the complicated spatial structure of medical pic-
tures, the above synthesis results still cannot accurately cap-
ture the edge information of human tissue, and there are
issues such as poor signal-to-noise ratio and fuzzy edges.
We present the Cross-Modal Contrastive Generative Adver-
sarial Network (XMC-GAN) in “Cross-Modal Contrastive
Learning for Text-to-Image Generation,” which addresses
text-to-image generation by learning to maximize the simi-
larity matrix between text and image using intermodal
(image-text) and intramodal (image-image) contrastive
losses. This method assists the discriminator in learning more
robust and discriminative features, making XMC-GAN less
prone to mode collapse even with one-stage training. In com-
parison to earlier multistage or hierarchical techniques, XMC-
GAN provides state-of-the-art performance with a simple
one-stage generation. It is trainable from start to finish and
simply requires image-text pairings (as opposed to labeled seg-
mentation or bounding box data). Furthermore, the available
public medical picture data collection has very little matched
data. The majority of the data utilized in the aforementioned
approaches are gathered by hand, which necessitates large per-
sonnel and material resources.

To summarize, this study presents a technique for the
cross-modal synthesis of PET pictures from MRI images
by combining residual modules and generative adversarial
networks to enhance the synthesis of subject-specific PET
images with little paired data. The three primary points of
the main work are as follows: the generator now includes
an enhanced residual initial module and an attention mech-
anism to completely extract the features of MRI pictures; the
pix2pix network architecture has been upgraded, and the
discriminator now uses a multiscale discriminator to
increase discriminate performance and reduce loss; the func-
tion incorporates a multilevel structural similarity loss based
on the classic adversarial loss and L1 loss, which improves
picture contrast preservation.

1.1. Advantages and Limitations of Medical Imaging. The
ability to promptly and precisely diagnose sickness and
determine its severity or harmless nature is one of the poten-
tial advantages of imaging tests. It might not be essential to
perform invasive diagnostic techniques such as exploratory
surgery, angiography, or cardiac catheterization. Medical
imaging is crucial when a person has a chronic illness or a
kind of cancer, not only for the initial diagnosis but also
for tracking how the illness is responding to therapy, deter-
mining whether the illness is advancing, and determining
when treatment should be discontinued or changed.



BioMed Research International

Conv 1*1

Output H(x)

Conv 3*3 |—>| Conv 3*3

FiGURE 1: Residual initial module structure [3]

One of the drawbacks of medical imaging is that there is
a slight increase in the likelihood that a person exposed to X-
rays would acquire cancer later in life. Cataracts, skin red-
dening, and hair loss are all tissue consequences that occur
at quite high levels of radiation exposure and are uncommon
for many types of imaging tests.

2. Related Work

2.1. Generative Adversarial Networks. The fundamental gen-
erative adversarial networks (GAN) model consists of the
input vector, generator, and discriminator. The generators
and discriminators are both implicit function expressions
that are often employed by deep neural networks. GAN
can train the predictive model of any distribution of data
using adversarial approaches and get great results. GAN’s
primary job is to train an adversarial generator and discrim-
inator. The objective goal is either a stronger generator or a
more sensitive discriminator, depending on the project’s
needs. Thus, generative adversarial networks are used in
CNN-based cross-modal residual networks for image syn-
thesis. Cross-modality image estimation includes creating
pictures for one form of medical imaging from those for
another. It has been demonstrated that convolutional neural
networks (CNNs) are effective in recognizing, classifying,
and extracting picture patterns. CNNs are used as generators
in generative adversarial networks (GANs), and estimated
pictures are classified as true or false based on a second net-
work. In the context of the image estimating paradigm,
CNNs and GANs may be seen more broadly as deep learn-
ing techniques since imaging data frequently have a large
number of network weights. The CNN/GAN image estimate
literature almost exclusively uses MRI data, with PET or CT
being the two main modalities. Literature [8] created the first
generative adversarial network (GAN) in 2014, which
included a generator G and a discriminator D. The generator
takes noise z from distribution as input, maps it to the data
space, records the data distribution of the actual sample x,
and creates a sample G(z) that looks like the original data.
The produced samples and the real samples are sent to the
discriminator, and the purpose is to categorize the generated
samples G(z) as false and the actual samples as true. GAN is
a process in which the generator and discriminator are
always in conflict, playing a game of maximum and mini-
mum values until they strike a dynamic equilibrium. GAN’s
goal function is as follows:

min maxV(D, G) = E,_p,, i [ID()] + E_p, . In (1 - D(G(2))]-

(1)

Since the results generated by the unconditional genera-
tive adversarial network have great uncertainty, literature [9]
proposed to add additional information y to the generator
and discriminator as a condition to construct a conditional
generative adversarial network (CGAN). The loss function
of CGAN is defined as

LCGAN(G’ D) = Ex,y [lnD(x, )’)] + Ex,z[ln (1 - D(x’ G(x’ )’)))]
(2)

The pix2pix network [10] is a type of CGAN for image
translation. However, it no longer inputs noise but directly
inputs the original image as a condition to the generator.
The discriminator uses the target image and the true and
false image pair composed of the generated image and the
original image as input to judge the true and false.

2.2. Residual Initial Block. The structure of the initial resid-
ual block [3] is shown in Figure 1, including two paths.
Among them, two 3 x 3 convolution paths extract data fea-
tures. A 1x 1 initial residual short-circuit connection can
deepen (in the encoder) or reduce (in the decoder) the depth
of the convolution kernel while solving the input. The prob-
lem is that feature maps and output feature maps have dif-
ferent channels, ensuring the fusion of input and output
maps at the pixel level. Compared with the inception mod-
ule, the initial residual block has fewer parameters and a
more straightforward structure, which can solve the prob-
lems caused by the depth of the network.

2.3. Attention Module. [11] proposed an attention module
for medical images; the structure is shown in Figure 2. The
attention mechanism determines the attention coefficients
of different regions on each input x' by gating the signal g,
allowing the network to focus on areas more relevant to
the task and suppress irrelevant background regions. The
neural network with the added attention module has higher
sensitivity and accuracy

3. Proposed Algorithm

We have provided a generally and locally aware GAN frame-
work for cross-modality transfer from MRI to PET in this
research. To improve the quality of generated PET scans,
the suggested multipath GAN architecture assists in simulta-
neously collecting both global structure and local texture. To
assist the generative model in accurately learning the funda-
mental bimodal data distribution, the overall framework and
the combined synthesis goal function were created. Experi-
mental findings show that our methodology not only



o

BioMed Research International

Conv 1*1

Resample

Sigmoid

F1GURE 2: Attention module [5].

Reality
MRI

Pre-processing

v

O

Synthesis PET

Local
discriminator

Global
discriminator

FIGURE 3: Proposed framework.

produces PET scans with higher-quality images. The model
framework of the improved fusion residual module and gen-
erative adversarial network cross-modality PET image syn-
thesis method is shown in Figure 3. The generator takes
authentic MRI images as input, learns the feature mapping
relationship between MRI and PET, and generates synthetic
PET corresponding to accurate MRI synthesis.

PET and natural PET are spliced with accurate MRI to
form a true and false image pair. Next, the two discrimina-
tors use the true and false image pairs as input to perform

true and false discrimination. Finally, the weighted average
of the two discrimination results is used as the final result.

3.1. Generator Network. Due to its good performance and
efficient use of memory, U-Net [12] is widely used in medi-
cal image segmentation tasks. Therefore, the algorithm in
this paper uses U-Net as the generator.

The generator structure is shown in Figure 4, which con-
sists of an encoding path and a decoding path. The encoding
course consists of a series of 3 x3 convolutions, 4 x4
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FIGURE 4: Generator structure.

convolutions, batch normalization, and activation layers.
The algorithm replaces the top pooling layer in U-Net with
a convolution layer, continuously extracts critical features
of MRI images through convolution operations, and com-
presses the vital information extracted from soft layers to
high layers. The decoding path consists of a series of 3 x 3
convolutions, 4 x4 deconvolutions, batch normalization
layers, and activation layers and reconstructs the final output
from the feature maps compressed by the encoding path.
To better learn the pixel information in the image, the
algorithm in this paper introduces the improved residual ini-
tial module into the encoding and decoding paths to ensure
a better generation effect. Increasing the size of the convolu-
tion kernel in the neural network can expand the receptive
field, but blindly increasing the convolution kernel will
increase the network parameters and bring specific difficulties

to the training of the network. Therefore, the algorithm in this
paper adds a 3 x 3 convolution to the 3 x 3 convolution path
of the initial residual module, replaces the larger convolution
kernel with 3 small convolution kernels, and reduces the
receptive field as much as possible while expanding the recep-
tive field—network parameters. In addition, the introduction
of the initial residual module can also solve the problem of gra-
dient disappearance caused by the depth of the network.
Since the structural information and spatial information
of medical images are more complex than natural images, to
better extract the critical structural features in MRI images,
the algorithm in this paper sets the encoder-decoder path
depth of the generator to 7 layers. However, considering
the network complexity and memory consumption, the
algorithm does not put the improved residual initial module
in all convolutional layers of the encoding and decoding



paths but compares the generation effect through multiple
experiments and finally puts the initial residual module in
the middle four layers of the network; only two 3 x 3 convo-
lutions are used in the first 3 layers of the encoding path and
the last 3 layers of the decoding path, which reduces network
parameters and training time while improving the genera-
tion quality.

The skip connection in U-Net can capture the contextual
features from the encoding path to the decoding path. The
fusion of low-level features and high-level features can retain
more detailed information of high-level feature maps, but it
may also contain feature information irrelevant to the syn-
thesis task. Therefore, to improve the synthesis quality, the
algorithm in this paper introduces a self-attention mecha-
nism in the skip connection path and combines the features
extracted by the decoding path before the skip connection
operation. The event features through the attention gate
mechanism and further eliminates the skip connection.

The interference caused by irrelevant features and noise
in the MRI images highlights the critical elements in the skip
connections to capture the essential information of MRI
images better.

In addition, to prevent the network from overfitting, the
algorithm also introduces a dropout operation in the gener-
ator. Finally, the synthesized PET image is obtained through
the Tanh activation function after encoding and decoding
the feature information.

3.2. Discriminator Network. To better learn the local and
global features of PET images, improve the game ability of
the discriminator, and enable the generator to generate PET
images that are more in line with the actual distribution, this
paper adopts multiscale discriminators, namely, local discrim-
inator and global discriminator. With two discriminators with
different receptive fields (70 x 70 and 128 x 128), the genera-
tor and discriminator can learn the relationship between the
spatially shorter and longer distance pixels.

Based on the idea of patchGAN, the discriminator net-
work first divides the image into N x N blocks and then dis-
criminates whether each subblock is true or false. The two
discriminator networks are 5 layers and 7 layers, respectively,
composed of convolution layers, batch normalization layers,
and activation layers alternately. Finally, the weighted average
of all results is used as the output of the discriminator.

3.3. Loss Function. This paper uses adversarial loss, L1 loss,
and multiscale structural similarity loss (MS-SSIM) as loss
functions.

3.3.1. Adversarial Loss. Adversarial loss can constrain the gen-
erated results to a certain extent, making the results closer to
the actual distribution. The damaging loss is shown in

Lo = 3 2. [-D(G(x:2)) G)

n=1

3.3.2. L1 Loss. The L1 loss is passed through the generator to
reduce the difference between natural and synthetic images.
The L1 loss is shown in
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3.3.3. MS-SSIM Loss. Structural similarity (SSIM) was initially
described by literature [13] and proposed to measure the sim-
ilarity of two images. The introduction of multiscale structural
similarity loss into the loss function can better preserve the
brightness and contrast information of the image.
The MS-SSIM loss is shown in equation
M

Lns-ssiv (%) = [Lan (%, )] ™ H [Cj(xs}’)]ﬁj [sj(x»}’)]yi~ (5)

-

Among them, Ly(x,y), ¢;(x,y), and s;(x,y) represent
the brightness, contrast, and structural similarity of the
image, respectively, and ay, 8, and y; represent the weights
occupied by different parts, respectively.

The final loss function of the model is as follows:

L=MLgax + AL, + Aslys_ssiv- (6)

Among them, A;(i=1,2,3) is the weight coefficient of
each loss.

4. Experimental Results and Analysis

4.1. Experimental Platform. The experiments in this article
are run using the PyTorch framework, with an Intel i7-6700
CPU and an NVIDIA GeForce GTX1080Ti GPU as the hard-
ware setup. The software environment consists of Ubuntu
16.04, CUDA 9.0, cuDNN 7.6, PyTorch 1.1.0, and Python 3.7.

4.2. Data Preparation and Parameter Setting. The Alzhei-
mer’s disease neuroimaging initiative (ADNI) public dataset
[14] was utilized, with 33 problems eliminated, to create
paired MRI and PET scans of 716 Alzheimer’s disease
participants. Subjects’ aberrant data were subsequently
accepted, and 683 subjects’ data were eventually utilized.

Before training, data is preprocessed. The FSL software
[15] is utilized for data preparation in this research, with neck
removal, skull stripping, and linear registration to MNI152
space among the processes. Three-dimensional data with a
size of 9110991 is acquired after preprocessing. As model
input, the 40th axial slice of the 3D data was collected and
upsampled to a size of 128128. The experiment uses the 5-
fold cross-validation approach to get more accurate experi-
mental findings. All of the data is split into five groups at ran-
dom, with four of them serving as the training set (547 slices)
and the other serving as the test set (136 pieces).

The weight coefficients of the loss function are changed
throughout the network training phase. Because the input
image’s pixel range is (0, 1), the resultant L1 loss is much
less. When the MS-SSIM loss coefficient is more important,
the brightness of the synthesized picture is higher, and when
the volume is lower, it has a less significant influence on the
outcome. As a result, the weight of each loss function is
eventually adjusted to 1=1, 2=100, and 3=1 after
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numerous testing and troubleshooting. Furthermore, the
batch size is set to 16, the initial learning rate is set at
0.0002, the network is optimized using the Adam optimizer,
and 200 epochs are iteratively trained. The learning rate for
the first 100 epochs remains intact, whereas the learning rate
for the final 100 epochs is lowered linearly to zero.

4.3. Experimental Results. To verify the performance of the
improved algorithm in this paper, this paper conducts
experiments on the ADNI dataset. The algorithm uses the
pix2pix model as the benchmark model and, at the same
time, compares with RIED-Net, pGAN [16], and GAN with
residual network [17] as the generator (ResnetGAN); the
GAN model with residual U-Net as the generator [7] and
other mainstream algorithms based on CNN and GAN are
compared and evaluated from qualitative and quantitative
aspects. A total of 5 sets of cross-experiments are carried out.

4.3.1. Qualitative Evaluation. The qualitative comparison
between the generated results of the algorithm in this paper
and the generated results of other algorithms is shown in
Figure 5. As shown from the first row of Figure 5, compared
with the actual image, different algorithms have the problem
of significant deviation of results and speckle noise. The con-
sequences of this algorithm are more complete. In addition,
the structural edges of the results obtained by other algo-
rithms look too smooth or blurred. In contrast, the results
generated by the algorithm in this paper are relatively more
precise. The difference is also improved to a certain extent,
and the visual is closer to the actual image.

In addition, due to the different brain sizes of other sub-
jects, there is still a specific deviation after linear registration
to the standard space. As shown in the second and third
rows of Figure 5, pix2pix and Resnet GAN cannot learn this
mapping relationship well, and the generated images and
size mapping confusion. Although other algorithms can
learn the change of structure size, there is a lot of missing
edge information, and there are still problems of noise and
significant structural errors. In contrast, the results synthe-
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FiGUure 7: Quantitative evaluation of PSNR.

sized by the algorithm in this paper have better edge integ-
rity and no noise speckles, which may be because the
improved residual initial module is introduced in this paper,
which improves the model performance. It can be seen that
the results generated by the improved algorithm in this
paper are more diverse and can preserve the edge structure
of the image more thoroughly.

4.3.2. Quantitative Evaluation. In this paper, mean absolute
error (MAE), peak signal-to-noise ratio (PSNR), and struc-
tural similarity index (SSIM) are used as evaluation indica-
tors. Figure 6 shows the quantitative evaluation of MAE.
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TaBLE 1: Quantitative evaluation results of each algorithm.

Evaluation indicators RIED-Net [5]  pix2pix [7] = Reset GAN [11] pGAN [15] Residual U-Net GAN [17] Proposed algorithm
MAE 0.065+0.030 0.063+0.030 0.066+0.030 0.072+£0.030 0.064 +0.030 0.062 +£0.030
PSNR/dB 29.838 £0.815 30.357+£0.969 30.304 +£0.642 30.156 +0.745 30.568 + 1.056 30.413 +0.823
SIM 0.564+0.133 0.637+0.160 0.641+0.736  0.630+0.130 0.644 +£0.150 0.670 £0.151
MAE [10] and PSNR [12] are calculated as
1 =
MAE= Yy, —x, ?) :
i=1
= Ve s &3 i 5%
LGPSNR =10 = Ig <m> (8) 2 e} 5 = i Es
& =)
Algorithm

Among them, MSE is the mean square error of the two
images, and I, represents the maximum value of the image
color, which is expressed as 255 using 8-bit sampling points.

SSIM [15] is calculated as

SIM(ny) (2P‘xﬂy + cl) (20,,+¢,) . )

2 2 2 2
(1viva)(droire)

2 2 :
Among them, y, Hy» O O and o,y are the mean, vari-
ance, and covariance of the pictures x and y, respectively;

¢, = (k,L)* and ¢, = (k,L)* are two constants that prevent
the denominator from being 0. Figure 7 shows the quantita-
tive evaluation of PSNR.

Table 1 shows the quantitative indicators derived from
the comparison experiments. The MAE indices of the results
synthesized by the method in this research are all lowered
when compared to previous algorithms, showing that the
enhanced technique in this work is more stable. The SSIM
values of the findings in this work are 0.106, 0.033, 0.029,
0.040, and 0.026, respectively, greater than those of previous
techniques, demonstrating that the proposed approach may
enhance the quality of synthetic pictures. The PSNR value of
the technique in this research is significantly enhanced when
compared to the MAE and SSIM indicators. The PSNR
values of the method in this work have been improved by
0.575dB, 0.056dB, 0.109dB, and 0.257 dB, respectively, in
addition to the GAN model based on residual U-Net. The
method may be observed to increase the quality of the syn-
thetic picture to some degree. The PSNR value of the
method generated in this research is lower than the GAN
model based on residual U-Net. This might be because
PSNR is an error-sensitive picture quality rating statistic that
ignores the human eye’s visual features. As a result, the pic-
ture quality it reflects does not always match the image qual-
ity witnessed and verified by the human eye. Figure 8 shows
the quantitative evaluation of SSIM.

As a consequence, the method in this study may improve
the quality of the synthesized image and increase the edge

Ficure 8: Quantitative evaluation of SSIM.

synthesis impact of the picture by integrating the qualitative
and quantitative findings of the experiment.

5. Conclusion

Aiming at the problems of blurred edges and low signal-to-
noise ratio of synthetic results in cross-modal synthesis tasks
of medical images, this paper proposes a cross-modal PET
image synthesis method that fuses initial residual modules
and generative adversarial networks. The authors provide a
cross-sectional method that combines generative adversarial
networks with residual modules. The method reduces the
number of parameters and enhances the generator’s capacity
for feature learning by incorporating an improved residual
initial module and attention mechanism. The discriminator
uses a multiscale discriminator to improve discriminant per-
formance. To better preserve visual contrast, a multilevel
structural similarity loss is incorporated into the loss func-
tion. The algorithm is contrasted with the common algo-
rithms using the ADNI data set. The experimental results
show that the MAE index of the synthetic PET picture has
decreased while the SSIM and PSNR indexes have increased.
The experimental results imply that the suggested approach
could preserve picture structural information while enhanc-
ing image quality in both subjective and visual metrics. By
introducing improvements in the generator, the residual ini-
tial module and attention mechanism are used to improve
the learning ability of the generator, and the multiscale dis-
criminator is used to enhance the discriminative perfor-
mance of the model. The comparative experimental results
under the ADNI dataset show that the improved algorithm
in this paper can preserve the image’s structural information
and contrast information. As a result, the generated image is
visually closer to the actual print. However, there are still
some shortcomings in this paper. For example, the medical
images collected by instruments with different parameters
have certain deviations. Furthermore, this paper uses the
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same preprocessing steps to process all data. Therefore, the
data collection method and preprocessing method will have
a particular impact on the experimental results. In addition,
in the cross-modal PET composite image experiment, only
the axial slice of the image is taken for the investigation,
which cannot fully reveal the three-dimensional structural
information of the brain. Therefore, different preprocessing
methods and cross-modal synthesis methods for 3D PET
images will be investigated next.

5.1. Future Scope. Beyond the use of machine learning in
medical imaging, we think the focus in the medical commu-
nity may also be used to develop the overall computational
attitude among healthcare practitioners and researchers,
mainstreaming the discipline of computational medicine.
The acceptance for further such systems will probably
increase until there is enough high-impact application soft-
ware based on mathematics, computer science, physics,
and engineering entering the everyday workflow in the
clinic. A new medical paradigm known as P4 medicine will
most likely be made possible by the availability of biosensors
and (edge) computing on wearable devices for monitoring
illness or lifestyle, as well as an ecosystem of machine learn-
ing and other computing medicine-based technologies.

Data Availability

The data shall be made available on request.
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